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Computations are performed of the pressure and velocity of gas motion in a porous 
medium for self-similar one-dimensional (plane, axisymmetric, and spherically sym- 
metric) problems for a quadratic drag law. 

In describing liquid or gas motion in a porous medium, the Darcy law [i] and the empiri- 
cal Forchheimer equation [2] are used, which for large Reynolds numbers (Re~100) can be re- 
placed by a quadratic drag law. The equations for the gas pressure and velocity here allow 
for self-similar solution for certain initial and boundary conditions, which is of importance 
since the solutions correspond to actual processes in a certain domain of the variables. 

Self-similar solutions of gas filtration problems in a porous medium were considered 
in [3-8] for a quadratic drag law. 

Equations in the self-similar variables were first presented in [4] for gas filtration 
problems and the asymptotic analysis of the integral curves. An analytic solution of the 
plane problem is obtained in [5] for a constant pressure on the boundarv. The solution of 
the problem of axisymmetric motion with constant gas mass-flow on the axis is represented in 
[6]. The numerical solution of the plane problem was examined in [7, 8]. 

Numerical solutions are presented below for the plane, axisymmetric, and spherically 
symmetric problems for a zero initial condition and power~law time dependence of the gas 
mass-flow at the origin. 

One-dimensional isothermal gas filtration for a quadratic drag law is described by the 
following system of equations: 

OP 1 O (r~uP) O, OP Pu-----~-z O, 
at + r - -7 ,  0--7 -o7 /+  ac~ = (1) 

where s = 0 corresponds to the plane problem, s = 1 to the axisymmetric, and s = 2 to the 
spherically symmetric problem. 

We write the initial and boundary conditions for the system (I) in the form 

P(r, t = O) = O; l i r a  (rSuP)= AF. 
r-0 (2) 

The boundary condition corresponds to a liquid or gas mass-flow according to a power law at 
r = 0. 

The problem (1)-(2) is self-similar with the dimensionless variable 8 = r(bc2ta)-x/3. 
The system (i) and the conditions (2) are the following in the self-similar variables: 

2 s 
m r -  T of '+ = T f~ + f'~ + ~'f 0; (3) 

f, + f~2 = O; (4) 

f (0.->-oo) = O, l ira (O~f~) = 1. 
e~0 (5) 

The pressure and velocity of gas motion in a porous medium are expressed in terms of the di- 
mensionless functions f(O) and ~(O): 
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2 Fig. i. Dependences of the dimension- 
less pressures (dashed curves) and ve- 
locities of gas motion (solid lines) on 

I e for q = 0 (curves I), q = 2 (curves 2), 
q = 4 (curves 3) and q = 6 (curves 4) 
for the plane problem (s = 0). 

P(r; t)= At~ (bcZ) l/a l+s f(O); u(r, t)= -~-- op(O). (6) 

(bc2) a 

Substituting (4) into (3) and cancelling f5 ~ 0, we obtain an equation for ~: 

2 
q~' - -  qo~ § --~- Oq~2 + §  (7) 

The constant m in (6), (7) is related to q and s as m = q + (i-- 2s)/3. For s = 0 and m = 0, 
analytic solutions of (7) are obtained in [5], and they are obtained in [6] for s = i and 
m = 0. In the general case, application of the scheme proposed in [5, 6] for the solution 
is difficult. 

Let us examine the asymptotic behavior of the solutions of (7) for O >> i. Analysis 
of the derivatives ~' on the lines ~ = ~e shows that for e > 2/3, ~' + =, while for e < 2/3, 
~' +--=. Tile limit curve to the family of integral curves for any s and m is ~ = 2/3e + 
o(e-2). It is shown in [4] that this curve is unique, which satisfies the condition of bound- 
edness of the liquid or gas mass during filtration in a porous medium. 

For e >> i the asymptotic solution for ~ has the following form to second approximation 

accuracy: 

~=--3-2 0@ 9 [ m ~  +-~2  ( l+s) ]  +0(0-~) (8) 

Let us examine the behavior of the solution of (7) for e << i. For s = 0 we obtain in (4) 
and (5) as e + 0 that ~ tends to the constant quantity Yo, whose value we determine below. 
For s = i and s = 2 we obtain that for e << I, ~ is related to e by the dependence 

2s--1 
qo = 20 -[- 70 + 0 (0-z). (9) 

Let us note that, at first glance, s -> 0 should follow from (9) as ~-+~0. However, this 
is not so, since the singularity e = 0 is eliminated in (i) and (7) as s + 0, and the formal 
passage mentioned is not realized. 

The solution of (7) was carried out by a numerical method by using a four-step explicit 
Runge--Kutta fourth-order approximation scheme [9]. Because of the necessity to select a 
specific integral curve satisfying the boundary condition, practical computations are possi- 
ble only with a negative step. It was assumed that the coordinate 6 varied between I0.i and 

0.i with a step h = e n- On_ ~ = --0.01. 

The velocity q0n-1(n = N, N--l, ..., 2) in the coordinate en_~ was defined by the formula 

where 

%_, = ~.  + h (K, + 2K~ + 2K~ + K016, 

K~ = O (%; q)~); K.. = 6 (0~ + 0.5h; q~,, + 0.5K~h); 

(io) 
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Fig. 2. Dependences of the dimensionless pressure (dashed curves) 
and velocities of gas motion (solid curves) on the dimensionless 
variable e for q = 0 (curves i), q = 2 (curves 2), and q = 6 
(curves 3) for the axisymmetric problem s = 1 (a) and the spher- 
ically symmetric problem s = 2 (b). 
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Fig. 3. Dependences of the numerical 
values of Yo and y in the solutions for 
the velocity of gas motion on the expo- 
nent q in the boundary condition. 

K~=G(0.+0,5h; 9~+0.5K2hS;K~ G(0.+h; ~+K3h); G(x, y) 9 3 2 x ~ - -  sy 
, = . . . . . . .  m .  (Ii) 

3 x 

The value of~N was calculated from the asymptotic formula (8). The mesh function fn 
was also determined numerically in the appropriate coordinates 8 n by using the Runge-- Kutta 
method for the formulas analogous to (I0), (ii), where G(x; y)= --y~2(x). The value of fl 
was calculated from the boundary condition (5). The computation was later performed with a 
positive step. 

Certain results of the numerical solution of the problem (3)-(5) are represented in 
Figs. 1-4. 

Shown in Fig. 1 are dependences of the pressure f(0) (dashed curves) and the motion 
velocity ~(e) (solid curves) for q = 0, 2, 4, 6, for the plane problem ~s = 0). It is seen 
from the figure that the velocity ~(e) of gas motion increases as a function of 0. For a 
fixed time t we obtain from (6) that the values of u(r, t) also increase with distance. This 
is related to the fact that a jump in the gas pressure exists at the initial time, which in- 
deed yields an infinite value of the velocity. For a fixed coordinate, the velocity values 
diminish with time. 

In reality it is meaningless to speak about gas motion even for 0~3, since the gas 
pressure for such e is extremely small. Filtration models do not describe the gas motion 
for the conditions mentioned for small t. Let us note that the increase in velocity with 
distance is typical for a number of self-similar problems [i0, ii]. 

Shown in Fig. 2 are dependences of the pressure f(e) (dashed curves) and the velocity 
of gas motion ~(8) (solid curves) for q = O, 2, 6 for the axisymmetric and spherically symme- 
tric problems. 

For large e (r is fixed, t + 0), the solutions for the velocity will be identical for 
s = 0, i, 2, as is seen from the figure, which corresponds to the physical crux of the pro- 
blems under consideration: As t + 0, the characteristic distances of the processes are small 
and the geometry of the problems exerts no influence. For small 8 (r + O, t, fixed) there 
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are quantitative and qualitative differences in the behavior of the solutions for the veloc- 
ity of gas motion. 

Dependences of Yo (curve i) and y (curves 2, 3) on the exponent q in the boundary condi- 
tion are represented in Fig. 3. Numerical computations exhibited good agreement with the 
asymptotic dependences for 8 << i for problems with different symmetry. 

The approximate dependences that agree with the numerical solutions to 5% accuracy for 
~3 have the form 

q) - -  7o -~- 0.250 q- 0.050~; s ---- O; q = O; (12)  

1 q- 0,60; s = 1; q ~ O; (13)  

f 3  
qo,-~ I /  ~ + 0 , 3 7 0 ;  s = 2 ;  q = O .  

Analogous dependences, but with other numerical values of the coefficients for 8, can be 
written also for q ~= 0. The gas pressure in a porous medium is determined from (4): 

f = exp {--Sqo2dO}. 

(14) 

(15) 

Substituting (12)-(14) into (15), we can obtain approximate solutions for f(e). 

It is known [12, 13] that the quadratic drag law is applicable to describe gas motion in 
a porous medium for Reynolds numbers less than 103. This circumstance constrains the applic- 
ability of the system (I), (2) in describing gas filtration. The solutions are valid only 
in a certain domain of the variable 0 [5]. For small r and t, the gas motion is described 
by a gasdynamic system of equations which agrees with the solution of the filtration problem 
as r and t increase, as the numerical investigation showed. 

Results of the present paper can be applied in investigations of gas motion in cracks 
[14]. 

NOTATION 

P(r, t), pressure; u(r, t), velocity of gas motion; A, dimensional constant; q, exponent; 
t, time; 0, dimensionless variable; f(e), ~ (8), dimensionless pressure and velocity of gas 
motion; b, coefficient in the quadratic drag; c, speed of sound; ~, parameter; y(q), numeri- 
cal value in the solution; y~ (0), dependence in the approximate solution; h, coordinate 
step; fn, ~ n, dimensionless mesh pressure and velocity of gas motion; B, parameter. 
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QUESTION OF THE MOVEMENT OF WATER IN CONCRETE WHEN 

IT FREEZES 

F. M. Krantov and A. G. Shlaen UDC 691.32:532.5 

We determine the dimensions of capillaries capable of removing the excess water 
from a freezing pore when there are no destructive processes taking place. 

Cement concrete is a capillary-porous solid. In the overall volume of its porosity we 
generally distinguish two main types of pores and capillaries: cement-gel pores, whose radii 
vary from 2. 10 -9 to 2" i0 -e m, and capillaries, which have a radius greater than 10 -7 m [i]. 
The relation between these types of porosity and the distribution of pores along the radii 
depends on a number of technological factors and is determined mainly by the composition of 
the concrete: by the amount of water used and the water-to-cement ratio (w/c). When the 
concrete freezes, the water in the pores of the gel does not freeze above 233~ [i, 2], but 
in the capillary pores it freezes at higher temperatures; as a result of the increase in its 
specific volume, in this phase transition, excess pressures arise in the pore system of the 
concrete. The stresses in the structure of the concrete which result from these pressures 
may lead to its failure. The capability of withstanding a specified number of cycles of al- 
ternating freezing and thawing while its loss of strength remains within a prescribed limit 
is called the frost resistance of the water-saturated concrete. The introduction of air- 
entraining or gas-producing additives into the concrete mix creates in the concrete closed 
air bubbles with radii of 5" 10-s-2 �9 i0 -~ m, which are surrounded by the cement gel, do not 
fill up with water under ordinary conditions, and are connected to the general capillary- 
porous structure by the pores in the gel [3]. It is known that such bubbles in the concrete 
help to increase its frost resistance [2, 3]. The greater the number of bubbles and the 
smaller the distances between them, the greater will be the increase in the frost resistance 
of the concrete [1-3]. Most investigators -- e.g., [1-3] -- attribute this to the fact that 
the air bubbles are compensating volumes into which the excess water can go when the water 
freezes in the capillaries. 

Figure 1 shows a simplified scheme of the structure under consideration. A water- 
filled cylindrical pore of radius Rp and length ~_ is closed at the bottom and surrounded 
by cement stone containing air bubbles connected with the pore by water-filled capillaries. 
The connecting capillaries are represented by straight cylindrical channels with an orienta- 
tion perpendicular to the surface of the filled pore and having an average length and vari- 
able radius r i. In the freezing process the heat is removed from the upper part of the speci- 
men. 

If the time required for the freezing of the water in the pore is much longer than the 
time required to stabilize the freezing rate [4], we can assume that the plane crystalliza- 
tion front moves along the pore axis at constant velocity v s . The thermal conductivity of 
the mass surrounding the pore is disregarded, since the supercooling of the water is enough 
to absorb the heat that is generated. In this case the value of Q, the volumetric flow rate 
of the water from the water-filled pore, required to prevent an intensive increase in pres- 
sure is determined as follows: 
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